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ABSTRACT

An ad hoc method to solve boundary value problems which are posed on
infinite intervals is to reduce the infinite interval to a finite but large
one and to impose additional boundary conditions at the far end. These
boundary conditions should be posed in a way so that they express the
asymptotic behaviour of the actual solution well. In this paper a rigorous
theory is derived which defines classes of appropriate additional boundary
conditions. Appropriate is to be understood in the sense that the solutions
of the approximate problems converge to the actual solution of the 'infinite'
problem as the length of the finite interval tends to infinity. Moreover
boundary conditions which produce convergence with the largest expectable

order are devised.
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SIGNIFICANCE AND EXPLANATION
A boundary value problem on an infinite interval consists of a system of
ordinary differential equations, some boundary conditions at a finite point

and a continuity condition at infinity, for example it is required that the

solution converge to a finite limit as the independent variable converges to

infinity. This condition is problematic when solutions are sought
computationally. Therefore it is useful to cut the infinite interval at a

point which is far out and to impose some suitable, so called asymptotic,
boundary conditions at that far end and to solve the resulting two-point
boundary value problem which is now posed on a finite but large interval by

any appropriate code. Difficulties occur in finding appropriate asymptotic

boundary conditions in the sense that the solutions of the approximating two-

point boundary value problems converge to the 'infinite' solution as the

length of the interval converges to infinity. This paper devises suitable

asymptotic boundary conditions which produce a fast - in most practical

problems - exponential - order of convergence.
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A THEORY FOR THE APPROXIMATION OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS

ON INFINITE INTERVALS

Peter A. Markowich

1. Introduction

Boundary value problems on infinite intervals, which are posed in the following way

(1.1) v = t%(t,y), 1<tc<w, aenNUC{O},
(1.2) y € C({1,0)]) : <==>y € C({1,*)) and 1lim y(t) exists ,
tro
(1.3) b(y(1)) =0
+
where £ : Rn ! + R are often solved numerically by restricting the infinite interval to

a finite but large one and by imposing additional suitable boundary conditions at the right

end. The resulting two-point boundary value problem has the following form:

(1.4) Xy = t“f(t,xT), 1¢e<T, T,
(1.5) blxg (1)) = 0 ,
(1.6) S(xp(T),T) = 0,

and can be solved by any appropriate code. The questions this paper answers are the
following:

1) wWhat class of asymptotic boundary conditions s(xT(T),T) = 0 imply convergence in the
following sense

(1.7) le - y'[1,T] +0 as T + @

= sup lz(t)| and

rzl :
[a,b] tela,b)
2) which asymptotic boundary conditions yield a reasonably fast order of convergence.

where

It will be shown that the admissible boundary conditions have to be constructed with
regard to the invariant subspaces and eigenspaces of the matrix

(1.8) Ag(¥g) 1= £ (=y(=))
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and that the order of convergence depends on the decay properties of the solution y of
(1<1), (1.2) and (1.3) and on the largest algebraic multiplicity of the eigenvalues of

(1.8) which have real part zero. Calling this number T we will show that for all

admissible boundary conditions (1.6)

T(a+1);

o 0 M
(1.9) Ix, - yi < const. (nT)* Ms(y(T), ™1, 0< 3<n i

T {1,T)

holds if the solution y of the problem (1.1), (1.2), (1.3) is isolated and decays v
sufficiently fast.

Wcrk on the sclvability and asymptotic behavior of the solutions, of problems of the

kind (1.1), (1.2) and (1.3) .ap "een done by M. Lentini and H. B. Keller (1980), F. de Hoog

and Richard Weiss (1980a,b) and P. Markowich (1980a,b).

The paper is organized as follows: 1in Chapter 2 linear constant coefficient problems lj

are treated, Chapter 3 is concerned with linear time varying problems which have the .

property that the matrix describing the system evaluated at infinity has distinct

eigenvalues, in Chapter 4 this assumption 1s neglected, Chapter 5 deals with nonlinear

problems and a practical problem from fluid dynamics is dealt with in Chapter 6. R
The novelity of this paper in comparison to the above mentioned ones is that no severe

assumptions on fy(t,y(“)) are made while Lentini and Keller (1980} require a certain ’

convergence behaviour of this matrix as t approaches infinity.

The used techniques are similar to those used by de Hoog and Weiss (1980b) who treated

the case where fy(",y(“)) does not have an eigenvalue with a zero real part.




2. Linear Constant Coefficient Problems

The problem
. (2.1) v -ty = tPF(t), 1<tc<e, aeR a>-1,
(2.2) y € C([1,°]) ,
. (2.3) By(1) = 8

shall be approximated by the 'finite' problem

a a
(2.4) X1 = tAx, =t f(t), 1¢e<T,
(2.5) Bx (1) ~ 8 ,
(2.6) S(T)x (T) = y(T)

as T approaches infinity. A is assumed to be a real n X n matrix with the Jordan

form J:

(2.7) A=EIE ' # 8

and J has the block diagonal form

(2.8) J = diag(a*,3%,07)

0

where J'¥ contains the eigenvalues of A with positive real part, J the eigenvalues

of A with a zero real part and J  the eigenvalues of A with a negative real part.

The dimension of these three matrices are r,, ¥, resp. r and the geometrical

multiplicity of the eigenvalue zero will be called ;0'

The projection like matrices Gy GO' G_ and 60 are obtained by taking the

R

matrices D, DO' D_ and D which are the projections onto the direct sums of invariant

OI
subspaces of J belonging to eigenvalues with positive, zero, negative real part resp.

onto the direct sums of eigenspaces belonging to zero eigenvalues of Jo, and by

cancelling all colmuns of these matrices which have only zero entries. So G, is
n x T, G0 is n x ro, G_ is nx r_and G0 is n x ;6. |
By substituting
b
(2.9) u=©gly ]

we get the problem

(2.10) w - %= % ey, lctcw,




(2.11) u € Ccel1,«]) , A

(2.12) BEu(1) = 8 . 1

The general solution of (2.10), (2.11) is

r +r .
(2.13) ule) = [8(8)G,,4(8)G_In + (HE)(L), nec’
where
. i
_ J ati,
(2.14) d(t) = exp(u rar R rj
and H 1is a solution operator for the inhomogeneous problem:
HE = H £ + Hof + H_f
where
t -1 -1 a
(2.15) (H,£)(t) = 8(t) [ D¢ (s)E f(s)s ds , "4
t -1 -1 [+
(2.16) (Ho£)(t) = ¢(t) [ D ¢ '(s)E fis)s'as ,
@®
LT B a
(2.17) (H_£)(t) = ¢(t) [ D_¢ '(s)E f(s)s'ds .
3

holds for & > 1. f 1is assumed to be in C({1,*]) and in order to make the integral in :
(2.16) exist we assume that

(2.18) NDOE'1f(t)Il =oqem@TE, e

Here r is the maximal dimension of the invariant subspaces of J associated with

imaginary eigenvalues. We assume that r > 0 because the case r = 0 has been treated by

de Hoog and Weiss (1980b). An analysis of the operator H can be found in de Hong and

Weiss (1980a) and Lentini and Keller (1980a). Markowich (1980b) has shown the following

estimates, which hold for t > § > 1
-1

(2.19) “(H+f)(t)| £ const. HD+E f'[t,”) R
- - i
(2.20) I E) ()1 < const, t ¢ maxus‘“*”""n_>os Yecann L
s>t




-y max IsYD_E-1f(s)ﬂ tor Yy 2 0 &

(2.21) V(H_£)(t)}) € const. t
8<s<t

All congtants are independent of f _and 6. Moreover we assume that B 1is a
(r0 + r_) x n - matrix, that B € R and that the (ro +r_ ) x (r0 + r_) matrix

(2.22) BE[$(1)G,,4(1)G_] is regular
so that (2.3) defines ;0 + r_  independent boundary conditions. According to Markowich
{(1980a,b) these propositions are necessary and sufficient for the unique solvability of the

problems (2.1), (2.2) and (2.3) for all appropriate _f's. Therefore S(T) has to be a
r +(r -r )

00

(r+ + (r0 - ;0)) X n ~ matrix and Y(T) € R so that (2.5) and (2.6) set up

n  boundary conditions.
At first we prove a stability estimate for (2.4), (2.5), (2.6):
Theorem 2.1: We assume that (2.22) holds and that (A), (B), (C) which are defined as

follows, are fulfilled.

(a) IS(T)! € const. for T +» =,

-(u+1)(r-1))

(B) lS(T)EEol = ofT for T+ ® ,

(c) I[S(T)EG+.S(T)EEOI-1I < const. for T + ™

where Eo is the n x (ro - ;0) - matrix which is obtained by cancelling the columns of

the matrix BO = Do - 50 which have only zero entries.

Then the problem (2.4), (2.5), (2.6) has a unique solution X for all T

sufficiently large and Xp fulfills the stability estimate:

(a+1)(r-1) (a+1)r

€ const.{IBf + T Iy(r)t + 17 1£8

(2.23) 'xTI[1,T] [1,T])

;O*!- n—(;0+r_)
if f e c({1,T]}), B € R , Y(T) € R .

In order to prove this we first reorder Jo by permuting its lines and columns so that

RJ R = 0, =J
(2.24) g0 Tep };o

disdancy




where R is an appropriate permutation matrix. This corresponds to a reordering of the

columns of E. The reordered matrix will be called E. Now

}r++(r°-r0) 6 ]r+
I, =
(2.25) (@ g = . » G = °°
}r ] }r +r
- 0
Yo~ %o

holds. From (2.24) it is easily concluded that

3° )

(2.26) exp(a — (t
We substitute
(2.27) Jo=F '

* T T
and get the problem
(2.28) 3& - c“?vT = % 50, 1<tcT,
(2.29) sEvT(1) =8,
(2.30) S(T)EVT(T) = Y{(T)
where 3 has the block structure

~ 4+ ~0 -

(2.31) J = diag(J ,JO,J ) .

We write the general solution of (2.28) as follows:

(2.32) vT(t) = A(t,T)€1 + C(t)E2 + vp(t,T)

where




[ + 1
exp(;E:—T (ta'M - Tq+1)) ]
(2.33) 0 e (e < 1)
A(t,T) =
a+1
[} ez(t - 1)
[} 8
"~ ~r" 4 H/—/-
r, T, = T,
and
(% 0
[} 0
C(t) = n
(2.34) ! 2
8 exp(a o t ]
= ~—t
T, X_
r++(ro-ro) ro+r

so that 51 € C

solution which will be defined later.

and Ez €C

From (2.26) we easily derive the following properties of e,, e,

(2.35) (a)  e(0)=1I_ -, (b} ey(0) =6,
0~ %o
(2.36) (a) e1(c°‘+1 -n7' - e (1 - 2,
a+1 a+t a+1
(2.36) (b) e, (¢ - e (1 - ¥ = e (1 - M)

for all t € R. A more general statement than (2.36) is

a+i a+i a+1 at+1
- 1)e1(1 t1 ) e1(t0 -t ) .,

(2.37) (a) e (t 1

10

a+1 a+1 a+1 a+1
0 - |)e1(1 -t ) = e2(t0 -t )} - e2(1 t

(2.37) (b) ez(t 1 1

for all to,t1 € R.

(2.38) (a) tet®™ ' - e oV e s,

holds. ;p(t,T) is an appropriate particular

RO e

a+1 ]
v ) b




(2.38) (b) ve, (%! - 1 = oI ror ks e
The estimate (2.38) is derived by using that
J
k a+ly _ . Y a+1 ;
(2.39) exp(a rarid ] = exp(i it JF(t) i

where Jk is an ry dimensional Jordan block with the imaginary eigenvalue iy and

F(t) is a real matrix whose entries are polynomials of maximal degree (rk - 1)(a + 1),

PR —

By inserting (2,.32) into the boundary conditions (2.29), (2.30) we get the linear

block system

A,(T) Az E‘ g - BEvp(1,T) i
(2.40) = — :
Aa(T) A4(T) 52; Y(T) - S(T)Evp(T,T) . 4
where ]
~ g a+1 =
(2.41) (a) A1(T) = [BEG+exp(E—:-T (1 - T_ )),BEGOI B
— ~ J
(2.41) (b) Az = [BEGO,BEG_exp(a " ,)] ’
~ ~= a+1 ~— a+t .
(2.41) (c) A3(T) = [S(T)EG+,S(T)EGOe1(T - 1) + SE?)EGOeZ(T - 1],
~— ~ J a+1
(2.41) (d) A4(T) = [S(T)EGO,S(T)EG_eXp(a P T )] .
The system (2.40) is soluble iff the matrices A, and (A3(T} - A4(T)A;1A1(T)) are

invertible. A, is invertible by assumption (2.22) and the existence of

- -1
(Ay - A4A21A‘) has to be proven. We will show that

-1 1 I 6

- ~ v =1
(2.42) (AJ‘A4A2 A1) = atd [S(T)EG+,S(T)EG0] (I+o(1)) for T » » ,
3 e1(1 - T )

The existence of the right hand side of (2.42) is assured by proposition (C) of Theorem

2.1.
We split A5(T) into:
(2.43) A (T) = [S(T)EG+,S(T)EEOG1(Ta+1 - 1] + [8,s(MEs.e (™' - 1)
I\ J %_0\’2 - \
1 2 [
AJ(T) AB(T)

and get




(2.44)

(2.45)

Moreover

2 1 -1
A3(T)(A3(T))

(2.46)

1 = e ! ¢
A (T) = (S(T)EG ,S(T)EG,] a1 _ .

From (C) and from (2.36)(a) we conclude

1 -1 . ® ~ ~= -1
(A (1)) = e+l |ISITIEG ,S(TIEG) .

~— a+1 a+1 ~ ~= -t
[B,S(T)EGoele - 1)e1(1 -7 )]IS(T)EG+,S(T)EG0] =

1

~— a+1 ~ ~= -
8, - S(T)EG082(1 -7 )][S(T)EG+,S(T)EGOJ

holds because of (2.36)(b). The proposition (B) and (2.38)(b) assure that

(2.47)

Therefore A;(T)_1
(2.48)

Moreover
(2.49) (a)
(2.49) (b)
and therefore
(2.50)

because of (2,48},

(A3

{2.51)

- 1 -
(A3(T)) = (AJ(T))

00
1. -1 _ -1 -1 -1
- A, A = (AT (I 4+ .2 (B (TIA, A (T)(AL(T)) )

IA§(T)(A;(T))-1N = o(1) for T > @,

exists and can be written as

-]
(1+ § (-1)‘(A§(T)(A;(T))’1)‘

i=1

1 1

y =

- (A;(T))_1(I +o(1)) for T+ = ,

ta ()1 = oqr BNE)y e T,

IA1(T)I =0(1) for T+ =

1

_1 -
IA4(T)A2 A1(T)(A3(T)) I = 0(1) for T + =

(2.49), (2.45). so
- i

42 et

= (A;(T))_1(I + 0(1)) for T+ »

and (2.42) follows immediately. The linear equation (2.40) can now be solved:

-9

——-




R oy

-1 -1 -1

( - o

€, (A3 A4A2 A ) A‘Az (Aa A‘Az A ) B Bzvpn,'r)
(2.52) o -1 4l - .

52 Az +A2 A (A3 A4)\2 A ) 41\2 -A A (A3 A4A2 A ) Y('r)-s('r)zvp(T,T)

Inserting &£ into (2.33) the term A(t,T)(A,(T) - A (T)A"A (‘I‘))-1 appears. From {(2.33)
1 3 4 21

and (2.42) we get

+
exp(a+1 tn+1_To.+1)) Y
a+t a+1
(2.53) Alt,T)(Ay = A A = 8 eyt =M, U1 Doy
0 e (t% -1je (1-1%*7)
2 1
6 8
Using (2.37) we conclude that
. - -1 -1 - (a+1)(r=1)
(2.54) MA( ,T)(A3('1‘) A4(T)A2 A‘(T)) '[1,'1‘] o(T )

holds.

From (2.52), (2.33) and (A) we derive:

(2.55) TR < const. (1l + p'@HN(r-1)

o, IY(T)1 + |vp(1,'r)l +

(a.+1)(t 1)~
Iv (T,T)l + Iv (e 'T)I[1,T]) .

Now ;p(n'r) has to be defined. We set

- £(t), 1<t<rT
(2.56) f(t,T) =

£(T), TSt =

and

2.57 £ . ft (__3_ a+ at+l ) ~~1 a ds
(2.,57) (TH+ () : . exply 13 (t -8 ) D+E s f(s) R
2.58 (H F)}(t) := It (—;3— £®1 - 5% )p E % (s)as
(2.58) THO t .-T expa+‘( )D s (s) ’
(2.59) (H_E)(t) = (HEE 'B)(t), S<eem, 16T

80 that we can define:

-10-
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(2.60) VP(':T) = H,rf - Tﬂ+f + Tﬂof + TH_E .

From the estimates (2.19) and (2.21) we conclude that

(2.61) (a) IT“*‘ + TH-tll6,T] < conat.ltlls'T]
because
(2.61) (b) ITH+£I[6,T] < const.lH+I[6’~]If(' r"[ﬁ,-]
holds. Moreover (2.58) can be estimated as follows
$( H £)(t)) € const,ifl fT (ta+' - sa+1)(r-1)sad. <
T0 T e,T) .
(2.62)
(a+1)r *
€ const. T 'f'[t,T]
Altogether we get
wplott)r
(2.63) 'HTfl[G,T] € c*T '!IIG,T] ’
and
(2.64) |VP(T.T)| - |(TH_f)(T)| < conlt.ltl["T]

holds because (Tﬂof)(T) = 0. From these estimates anc from (2.55) the stability estimate
(2.23) follows.

In order to derive a convergence statement we write the problem (2.1), (2.2), (2.3) as

follows
a a
(2.65) y' - t Ay = t £(t), 1<¢t<T, yec(r=,
(2.66) By(1) = 8 ,
(2.67) S(T)y(T) = S(T)¥(T)

and subtract (2.4), (2.5), (2.6) from (2.65), (2.66), (2.67). We get

(2.68) (y = %)t - tPAly = x) =0,
(2.69) B(y - XT)(1) =0,
{2.70) S(T)(y = XT)(T) = S(T)y(T) = Y(T) .

If S(T) fulfills the assumptions (A), (B), (C) Theorem 2.1 can be applied giving:

(a+1)(r=1)

(2.71) 1y - < const. T I1IS(T)y(T) - Y(T)N &

* 11,1)

i s ——

gy Py

T L

PR P ey
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Setting Y(T) = 0 and using (2.9), (2.13) we get
(a+1)(r-1)

(2.72) ly = x_1 < const. T IS(T)E[@(T)E $(TIG In + S(T)E(HE) (T)HI
T (1,T] 4] -
r_+T,
for some ne C » Assumption (B) guarantees that all columns of the fundamental matrix
. =(a+1) (r-1) :
which are constant are dampened by an ofT )« All other appearing columns decay

exponentially. Therefore the term which originates from the solution of the homogeneous
problem converges as an o(1) as T * ®, So Assumption (B) is necessary for convergence

for general B and f. Now let

=(a+1)(2r=-1)=¢c

(2.73) 1£(t)1 = O(t ). €>0 .

From the estimates (2.19), (2.20), (2.21) we conclude that

(2.74) P(HEN(T)N = O(T-(a+1)(r-1)-e)

holds. Altogether we get

€

DD s (g5 1 + 1smEsmIc 1 + 770 .

. ly - < .
(2.75) y xT.[1,T] congt. (T

If f(t) contains an exponentially decreasing factor so that it has the asymptotic behaviour

W u+1)): ©w>0

(2.76) PE(E)N = O(tsexp(- s+t

then there is an operator H so that Yp = EHf is a particular solution of (2.65) and

B+(a+1)r G+1))

(2.77) Y (HE) ()1 = ofT (2nT)exp(~ —— T

holds. A proof for this can be found in Markowich (1980b). 1In this case 'I‘-c in (2.75)

has to be substituted by TB+(Q+1)(ZI-1)lnT exp(- > f 3 Ta+1).
An optimal choice S(T) = Sp{(T) would be so that
(2.78) [SD(T)EGO,SD(T)EG_] =8
holds. (2.78) is fulfilled for
T

(G+) - B
(2.79) sD(T)E = SDE = <==> E sD = [G+,GO] .

@&T

0

These are linear equations for the rows of Sp which can be chosen independently of T.
The asymptotic boundary condition (2.79), called projection condition fulfills (A), (B),
(C) in Theorem 2.1 and is optimal in the sense that it makes the first two terms on the

right hand side of (2.75) vanish.

-12-

- d

T e e —————— e




3. Linear Variable Coefficient Problems - Distinct Eigenvalues

In this chapter we analyze the problem

i (3.1) v - t2a(t)y = t%(t), ace Ny lStcew, t'
(3.2) y € c({1,]) , rf
(3.3) By(1) = 8

and we require the n x n matrix A(t) to fulfill ;
(3.4) A€ C([1,%]), A(=)#*0, ’
v

i

<«
(3.5) A(t) = | At " for t sufficiently large .
i=0

ad ks

Moreover let J, be the Jordan form of A obtained by

(3.6) Ag = BJET! .

il a1t

The following assumption is basic for this chapter:

o

ettt d

(3.7) Jo = diag(A1,...,An), Ai # Aj for i# j .

The substitution

-1

(3.8) u=Ey
gives the problem
(3.9) w - %50 = tE ), 1stce,
(3.10) u e c(l1,=])
where ‘
1 T j 1
(3.11) Jt) =g A(t)E= § gt g =g AE.
1 1 1

i=0

The fundamental matrix of the homogeneous problem (3.9) can be represented as an asymptotic

series (see Wasow (1965) and Coddington and Levinson (1955)): L
(3.12) $(t) = p(c)tDeQ(t)
where

-13~-




(3.13) P(t) ~I + | pit'i .
i=1
(3.14) D= diag(d1,---,dn) ’
t<.!'0-‘| tu.
(3.15) Q(t) = Jo Py + Q1 o + see ¢ Qat, Q; are diagonal matrices

hold. The unknown coefficients P;, Q; and D can be calculated by algebraic operation
from the J;i's. An algorithm for that is given in Markowich (1980b), and therefore the
agymptotic behaviour of the basic solution can be determined knowing the Q;'s and D.

Let 50 be the projection onto the direct sum of eigenspaces of Jo associated with
those eigenvalues with a real part zero which produce a basic solution which is in
C([1,#]) and let EO be the projection like matrix which is obtained by cancelling those

~

columns of BO which have only zero entries. G0 be a n x ;0 matrix. Then the general

solution of the problem (3.9), (3.10) is

T +r
3.16) ult) = [$(£)G),$(£)G_In + (HE)(E), n €cC 0

where G_ is defined as in Chapter 2 and up(t) = (Hf)(t) is an appropriate particular
solution, which has been described by Markowich (1980b). The operator H operates on the

space of all functions fulfilling

(3.17) £e c((6,1), §>1 and IE()l =0t % "), e>0.
Then the estimate
(3.18) V(HE)(t)N € const. t-elnt . maxlsa+1+€f(s)l

s»8

has been proven by Markowich (1980b). The particular solution on {1,®] is obtained by

continuation. The boundary value problems (3.1), (3.2), (3.3) is - under the given

r +r
assumption on A(t) and f - for all B€¢ RC ~ uniquely soluble iff the
(ro +r ) x (ro + r_) matrix
(3.19) as[¢(1)60,¢(1)c_1 is regular .
-14-
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Of course, B has to be a (;0 +r ) xn matrix. We consider the approximating problems

a o
(3.20) x& -t A(t)xT =t f(t), 1<¢<T, a € No '
(3.21) Bxp(1) = 8 ,
(3.22) S(T)XT(T) = y(T) . ~

~ n=(r +r_)

S(T) is a (n - (xo +r))xn matrix and Y(T) ¢ R « For the following G, is
defined as in Chapter 2 and 50 is the n x (ro - ;o) matrix which is obtained by
cancelling the zero columns of Do - BO' Then the following stability theorem, which is

the analogous to Theorem 2.1, holds:

Theorem 3.1: Assume that (3.19) and (A,, (31), (C1) which are defined as follows, hold:

(Rq) IS(T)N € const. as T * =,
(8,) IS(TIEG)! = o(1) as T+ =,
() 1(S(TIEG, ,S(TIEG) N < const. as T+ = .

Then the problems {3.19), (3.21), (3.22) has a unique solution x, for sufficiently

large T. xq fulfills the estimate

< const. (181 + ty(T)1 + T 'enmusl

(3-23) e SITRY) t1,m’
R n=(T+r_)
for £ e C({1,T]), Be R . Y(T) € R .
The substitution
(3.24) vp = E"xg
gives the new problem
(3.25) vy = 3ty = 8 80, 1<ecT,
(3.26) BEVp(1) = 8 ,
(3.27) S(T)EVQ(T) = Y(T) .

As the general solution of (3.25) we take for convenience

{3.28) voit) = o(t)e 2™ 6 & je. + ¢(e)(E.,G 16, + v _(£,T)
* T +'70' ™ 0'7-"72 p '

r++(ro-;0) r0+r_
where 51 € C B 52 € C hold and vp(-,T) is an appropriate particular

solution which will be defined later. ¢(t) is the fundamental matrix as of (3.12).

Evaluation of the boundary conditions (3.26), (3.27) gives the linear block system

-15=
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-Q(T)T-

D ~ ~
BE$(1)e (6,.G! BE$(1) [G,,G ] £ 8 - stpn,'r)

(3.29) . . = .
S(T)EP(T)[G+,GO] S(T)E¢(T)[G°,G_] 52 Y(T) - S(T)EVP(T,T)

The matrix in the (1.1) position is bounded because of the definition of G, EO and
because of the diagonal form of Q(T) and D. The matrix in the (2.2) position is bounded
too, because o(t)[EO,G_] is the matrix, whose columns are the basic solution of the
homogeneous problem which are in C([1,®]) and because (A;) holds. Moreover
(3.30) IS(T)E$(T)N = o(1) as T + =
because of (B;) and (3.12). The matrix in the (1.2) position is invertible because of
(3.19) and its inverse is, as the matrix, independent of T. Finally
(3.31) S(TIER(T) (6,5, = S(MELG,.&)) + orr™ )
because of the asymptotic expansion for P(t), (C,) assures the bounded invertibility of
the matrix in the (2.1) position.

From (2.40) and (2.52) we conclude immediately that the system (3.29) has a unique
solution (£1,52) € ¢ and the estimate

(3.32) lle[1,T] < const.(1B8) + My(T)! + va(-,T)l[1'T])

follows,

The particular sclution vp(-,T) has to be defined now. We set

(1) (1) (1)

() LTS
(3.33) (a) v (+,T) = H = M OUE+ O£+ H OUE, (D) M f£= 3 _n 'f

T T + TO0 T - TO . T 01
i=1
where
(N s a1
(3.34) (i, £)() = ¢(t) | 0,67 (s)8"E f(s)ds ,
T

(1) t -1 a_-1

(3.35) (. £)(t) = ¢(t) [ D ¢ (s)s'E f(syds, & > 1
]

and
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t
oct) [ D .9 (s)s®E 'E(s)ds, if (I) holds

T

0i

(1) .
(3.36) (THOi £){t) = .

o(t) [ 001¢“(s)s“5'1f(s>ds, if (II) holds .
5

is the projection onto that eigenspace of Jq which belongs to the ith eigenvalue

Doi
with real part zero and (1), (Il1) are defined as

(I) Re(Q(t)DOi) + 4%  or (Re(Q(t)DOi) = 0 and Re(DDOi) 2 0) ,
(11) Re(Q(t)DOi) + = or (RE(Q(t)DOi) 20 and Re(DDOi) < 0) .

From the considerations in Markowich (1980b), Chapter 3, we immediately conclude that

(M a+1
. i < [} .
(3.37) HT fN[G'T] T LnTiE (8.7]

Therefore the estimate (3.23) follows and Theorem 3.1 is proven.
As in Chapter 2 the convergence estimate follows
. Iy - f < ol - ]
(3.38) y xT (1,1 const.iS(T)y(T) Y(T)
for all (r, + (ry - T;)) x n matrices S(T) which fulfill (Ay), (B) and (C,).
Setting Y(T) = 0 and anserting (3.16} we conclude
(3.39) ty - x_I < const. (RS(TIEQ(T) (G ,G_ ] + IS(TIE(HE)(TIN) .
T [1,T) 0’ =

The assumptions (A,) and (B,) guarantee convergence for all f fulfilling (3.17) because

(3.18) holds. If
(3.40) s(T)EEO 0
convergence of the order T_’ + T-ElnT follows. 1In many practical cases all eigenvalues

with real part zero produce exponentially dQecaying solutions and £ also decays

exponentially. The operator H can be changed to an operator ﬁ, sO that (ﬁf)(t)

decays with the same exponential factor (see Markowich (1980b)). In this case exponential

convergence follows from (3.39).

The optimal boundary condition is again the projection condition and it has to be

calculated from the equation

-17=-




(3.41) SD(T)EP(T) z

T

G,)
0
which is uniquely soluble because of the regularity oo E and P(T).
The asymptotic boundary!condition
(3.42) Sp(T)%p(T) = 0
would imply that
(3.43) Sp{TIES(T) (G ,G_) = ©
because of the form of ¢(T). However, we do not know P(T), but we can calculate the

coefficients Py of its expansion recursively (for the algorithm see Markowich (1980Db)).

Having calculated P1'P2""’Pk we set

- k -3
(3.44) P(T) =I+ ) p.T
i
i=1
and solve
T
(3.45) SD(T)EP(T) =
. T
(Go)
instead of (3.41). Because
{3.46) pry =P(1) + o0 X ) as T e
holds we get by a simple perturbation analysis
(3.47) 's'D('r) =5, (T) + o™ s Tae,
Therefore
(3.48) IS, (TE(T) (G,,G_11 € const. T 1(1) (§(,6_11

holds and the boundary condition ED(T)xT(T) = 0 implys at least convergence of the
order T X' if £ z 0 holds. More generally speaking the order of convergence is
determinied by inserting (3.48) into (3.39).

However, this rather work-intensive procedure does only make sense if some columns of

o(t)[EO,G_J do not converge exponentially. Only in this case the projection conditions

imply a significant improvement of the order of convergence.
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4. Linear Problems -~ The General Case

In this chapter we admit a general Jordan form of Ao. So we deal with problems of
the form (3.1), (3.2), (3.3) with the assumption (3.4), (3.5), (3.6).

Again we perform the substitution (3.8) and get (3.9), (3,10).

The fundamental matrix ¢(t) of the homogeneous problem (3.9) can now be represerted

as an asymptotic log-exponential power series of the following form

(4.1) o(t) = p(t)tPeR(t)
where
i

® -2

(4.2) Plt)~ J Pt P as t+w=, pen_,
i 0

i=0

(4.3) D 1is a constant matrix in Jordan form ,
1

tc+1 ta+1_ ; %

(4.4) Q) = dlaglio) g3 T Y WAt T T 2 eyt

and the Qq are diagonal matrices. diag(Jo) is the matrix which has the same diagonal
entries as Iy and all other entries zero. The matrices T° and eQ(t) commute because
the diagonal elements of Q(t) which belong to a particular Jordan block of D are

equal. Moreover P(t) can be split up into:

(4.5) P(t) = P, (€) * Py (t) P gy (8
where

5 i
(4.6) Piyy(t) ~ T+ z Pyt o

i=1

4

~ 7 p =

(4.7) Pyt iio Pyt v k=23

P(z)(t), P(3)(t) are in block diagonal form too. The i-th diagonal block of P(z)(t)
corresponds to that block in J, which is obtained by gathering all Jordan blocks

belonging to the i-th eigenvalue of J, and the j~th diagonal block of P(g)(t)

-19-




corresponds to the j-th eigenvalue of Q(t) where in both cases only different eigenvalues

are counted. Markowich (1980b) has shown that

-1 (u+1)(ri-1)
(4.8) I(P(z)(t)) Dil < const. t

holds, where D; is the projection onto the direct sum of invariant subspaces associated
with the i-th eigenvalue of JO and ry is the algebraic multiplicity of that i-th
eigenvalue. The statement (4.8) holds for the matrix P(2) derived as in Markowich

(1980b).

The matrix P(3)(t)tD is the fundamental matrix of the system

(4.9) 2= ln+ '—2E(x))z, Becir1,®)
X
where
- (t)
(4.10) u =Py (E1P 5 (t)eR(E)2

has been gset. (4.9) has a singularity of the first kind of t = @, Obviously P(3)(t)

and D are not uniquely defined, only their product is unique (neglecting multiplication

~ - +
with a constant matrix from the right side). P(B)(t)tD = (P(3)(t)t 1)tD I would also be a

~

way of splitting the product. The algorithm given by Wasow (1965) establishes a matrix

~

;(3)(t) which has a convergent power series expansion, but P(s)(w) is not regular. We
will show now that a representation can be given, so that 3(3)(“) is regular. Therefore
we assume that B is in Jordan - canonical form:

(4.11) B = diag(B1,...,Bq)

and By has the only eigenvalue bi' where Re(bi) €0 for 1< i< s and Re(bj) >0

for s+ 1< j < n. We write (4.9) as

B(x)

%)=

1 1 = ~
(4.12) z' = x Bz + o (B(x)z), B(x) =

and set for 1 < i < s

@ -

{4.13) zi(t) = + (GBzi)(t), § <t ¢w

D e Dt

where G is the operator defined in Markowich (1980b), Chapter 4 which applied to a

=20~

e




n

— , |

function g defines an appropriate particular solution of the problem

1 1
(4.14) z' = — Bz +~ g, § £ x ¢ =
x x

where &8 > 1. Markowich (1980b) derived that

(4.15) 1(Gg) (t)1 < const.(tnt) T X¢ ¢4y , 0 < 3§ < max(dim(B,))
[élw] i

holds if

(4.16) gtt) = £ 5y 5(0), 9,3 e c, (18,2)]
£ e C{[8,2)) which are bounded as

where Cb([6.“)) is the space of all functions

t + @, Setting
B, Re(b, ) dim(Bi)-1
(4.17) oi(t) =0t " = ct (2nt) ' 1<ic<s.
We want to show that (4.13) establishes a fixed-point equation for z; € AU s where
o
1
(4.18) (Aoi'S = {ujule) = ult)o (t), U € C ((§,N},kul, = LLLEPRS I

We want to show that the operator

i -
(4.19) (wi(zl))(c) t + (GBzi)(t)

is a contraction on Ac 6 for § sufficiently large. From {(4.13), (4.15), (4.17) we
e
i

A Moreover

conclude that *1 maps A01,5 into Oi.ﬁ'
- _1 J
. ] - [] -~ R -
(4.20) wi(zi1) Wi(ziz)li = GB(zi1 ziz)lli < const. § (&nd) lzi1 zi1ni

is a contraction on Ao s for § sufficiently large. From
’

holds, and therefore wi
i

(4.13) we conclude

X Dee

2j+dim(Bi)

z,(t) = (1 + ott™ 20ty nit as t +® ,

(4.21)

Dee

Now let s + 1 € j € n hold, so that Re(bj) > 0. We substitute

-21-
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(4.22) z, =z -t 3

and (4.12) becomes

(4.23) el + Dz + LB, .
3 x J J x 3j
Now we set
]
8
- B -(b_+1)I —
(4.24) z (¢ = |t 3 3 + (GBz.)(t)
j 3 3
8o that
B, ~(b.+1)1 -1 dim(B_)-1
(4.25) o) = It 39 I = cot” ' (&nt)
and (4.13), (4.21) implies that
8
6
- - 23+dim(B ) B _-(b_ +1)I
(4.26) z,(6) = (1 + o(t” (ant) Inled ?
8
8
holds and from (4.22) we conclude
8
8
- 2j+dim(B, ) B,
(4.27) z_(t) = (I + o(t” (&nt) Iyl e ] as £+ e,
] 8
8
Obviously the matrix
-1 m B
(4.28) 2(t) = [z,(E),e0erz (8)] = [I +0(7 (An0)"NE, me N

is a fundamental matrix of the system (4.9). Therefore P(3)(t) and D in (4.5) and

{4.1) can be chosen so that

(4.29) lp(B)(c)"l = I1 + o(1)! < const.

holds.

Ty




Knowing the fundamental matrix asymptotically we can sort out the basic solution vy

fulfilling ;i € C{{1,%]) so that the general solution of (3.9), (3.10) is

~ gty
(4.30) ult) = ¢(€)[G ,G_]n + (Hf)(t), n€C

where H is defining an appropriate particular solution Hf on [§,»] if
- (4 _.-
€ (a+1)r-€

(4.31) f(t) = (lnt)lF(t), F ¢ cb((d,w))

where r is the maximal algebraic multiplicity of eigenvalues of Jo which have real part

zero. Moreover
—e j0+£
. < . < < .
(4.32) L(HE) () const. t (&nt) HFH[G'm], 0 jo n
The particular solution on ({1,®] is obtained by continuation.
Aga.n the boundary value problem on the infinite interval is uniquely soluble for all
Y +r

Be R T ana f's which fulfill (4.31) iff the (T, + r_) x (F, + r_) matrix

(4.33) BE[$(1)G,,$(1)G_) is regular .
Of course B is an (;0 + r_) x n matrix.

The approximating problems have the form (3.20), (3.21), (3.22)., We will again prove

a stability theorem.

Theorem 4.1. Assume that (4.33) and (Az), (Bz), (Cz) which are defined as follows, hold:

(Az) Is(T)l € congt, as T + » ,
~ -(a+1) (r-1
(8,) IS(TIER(TIT N = o(r” (XTI
s -1, (akt) (x-1)
(cy) “(S(T)EP“)(T)[G*,P(z)(T)P(a)(T)GOJ) i = 0(T )
Then there is a unique solution x; of the problem (3.20), (3.21), (3.22) for T
r +r
sufficiently large and the following estimate holds for all 8 € R 0 T,
(ro-r°)+r+
Y{T) € R , £ ec(1,T]):
(a+1)(x=1) {a+1)r 3
. < . ] ] ] WEk .
(4.34) HxTM[1'T] const.{UBH + T Y{(T)4 + T (LnT) W f [1,T})
We substitute
+
Y
5 (t) = (t ) = 0
(4.35) Xp = EP(1) )wT(t B wT = W
Y
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and get three separate problems

+ ' + +
WT(t) J (t) wT(t)
0 _,a 0 0 a -1 -1
(4.36) wT(t) =t J(t) wT(t) +t P(1)(t)E f(t)
—_—
wT(t) 3L wT(t) f(t)
where
+ ) J+
J( 0
0 _ 0 _
(4.37) J (») = J0 = J0
3 (=) I

+

and the eigenvalues of J0

have positive real part, the eigenvalues of Jg have a zero

0 have a negative real part. This structure can always

real part and the eigenvalues of J

be obtained by reordering the columns of E. Now we rewrite the equation for w;:
+ oo R0t t + _ ot + 9%

(4.38) wT(t) t JowT(t) + (J (t) Jo)wT(t) t f+(t) .

We define the general solg;ion of (4.38) as:

+1 a+1

[+ ))

J
(4.39) wn(t) = exp(gg (¥ -1

+ + + o+ ~
o+ 1 E 4 (H (T - 3w () + (HE (L)

+
where oy is defined in (2.57)with E = I and JO = JO. We derive

+

W et s (e E ()

+ + +
(4.40) (I = H (3 = I D )(t) = exp( o E,

a+ 1 T
+
de Hoog and Weiss (1980b) have shcwn that (I - TH+(J+ - Jo)) is invertible as operator on

c((8§,T]) with 8§ and T sufficiently large, so that

+ + ~
(4.41) wT(t) =Y (8, TIE + (£ )(¢) € c(é,rl)
where J+
+ +,.=-1 at+1 _ a1
(4.42) V(o) = (1 = H (3 = 30)) exp(a T3 (h-T y), hie) = ¢
and
~ + +. .~1 ~
(4.43) V£ = (1 - H (I -30)) LHE .

Moreover, they have shown that

=24~
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(4.44) (a) I¢+(',T)|[6’T] €< const., (b) 'TW+(f+"[s )
and from (2.57) and (4.42) we derive that
(4.45) ¢+(T,T) =1.

Now we define the general solution of (4.36) as

< const.lfl

(6,11

y (t,T) (<] D
- + Q(E)-Q(T) &y ™
wptt) { [ ] G, P, (EIP 4 (t)e () G, } £, +

9 9
(4.46)
Q(t) D~
+ P(z)(t)P(3)(t)e t7(G,,G 1E, +
ERERILI
r +(r -; )
0 + 0
+ e . EecC 0 .
w;(t,T)

where wo, wp are appropriate particular solutions. This solution is defined on
and the corresponding solution on [1,T] is obtained by continuing W+(',T).

in (4.35) and evaluating at the boundaries sets up the linear block system for 51, 52:

[w+<1,T> o
Q(1)-Q(T), -D~ ~
BEP(1)(i)[L 5 e}s+,v(2)(1)P(3)(1)e T Go] BE¢(1)[GO,G_] ;
(4.47) 1 .
)
SITIEP (T (G /P, (TIP 5, (TIG] S(TIE$(T) G ,G_]
VL LE () 1
8 - BEp,, (1) |wl(1,1)
(1) p
w (1,T)
P

LV (D)

Y(T) ~ S(T)EP,_ (T) w;(T,T)

(1)

w;(T,T)

~25-
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The matrix in the (1.1) position is bounded, BE¢(1)[E°,G_] is independent of T and

invertible because of (4.33), the matrix in the (2.1) position fulfills (C,) and

(4.48) 1S(TIES (T) (3,611 < o1)r (**1(F7N)

holds because of (Bz). From (2.40), (2.52) we conclude that

(a+1) (T~1)
(4.49) lel[1,T] < const.(I8F + T EY(T)Y + lvp(1,T)I +

N ST DR K TR T O 2 P
o o (1,7

where

SUNERLES
(4.50) v (£,T) =P, ()| W(t,T) = w¥eye)

p ! (1) P T
w_(t,T)
P
(2) (2) (2) (2) (2)
has been used. Splitting HT into TH+ . THO ’ TH- where TH+ is already
~ (2) (1)

defined by TW+(f+), we can define THo as we have defined THO in (3.36) only the

Dyy have to be substituted by the projections onto the invariant subspaces of D. The

estimate

(2) 0

oy 3
(a+1)r
oy T (&nT)

(4.51) 1 £ < const, e

] ]
{1,7] (1,1}
results as in Chapter 3.

H(z)f can be constructed by the same perturbation approach we used for the

T -
: (2)
construction of TH+ f. We set
1 -~

(4.52) MAEY s - m @ - T mE - woleem)

where - H_ 1is defined in (2.59) with E =1 and J = J. and then

o

2)

( = 8
(4.53) (TH_ £)(t) P(1)(t)
Tw_(f_)(t)
holds. Moreover the estimate
(4.54) ] H(2)fl € const.lfl
° T- 1,7} (1,1)

is fulfilled. Because of (B,} and (3.36) we get
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(4.55)

(2
IS(T)E(THo

)

so that the estimate (4.34) follows.

Again the convergence estimate follows:

(4.56)

for all matrices

S(T)

(a+1) (T-1)

iy - KT'[1:T1 € const. T

fulfilling (A,), (By), (C,).

we get the order of convergence as follows:

(4.57) Iy = %b 4 gy € const. r‘“*”""’(ls(r)z¢(r)réo,c_)| + LHE)(TI) .

Assumption (C,) guarantees convergence for all f'
2

(4.58)

because the columns in ¢(T)

O(T-(a+1)(z-1)

convergence is exponential, too.

Still the question has to be answered whether there is a matrix S(T)

assumption of Theorem 4.1 and how it can be constructed.

(4.59)

and choose S(T)

(4.60)

(4.61)

and

(4.62)

Yo

so that:

S(T)P,. (TIP

(2)

Again if all columns of ¢(t)

S(T)EP(4,(T) = S(T)

S(T)[G+,9,6] =

s(1)06,6,6_) = 8

(

3)('1‘)[9,G0,8] =T

j
£)(T)1 < const. T (2nT) 0

Setting Y(T)

which fulfill

I£(t)) = o(t-(“¢1)(2r~1)-c

which may be constant as

€

We set

-(a+1)(?>1){

(

hm

Is(T)y{T} = Y(T)

T + @ are dampened by the factor

and f decay exponentially, the

e ]
~ T
G,)

because of the block structure of P(z), P(3) (4.62) is equivalent to

(4.63)

§(T)[6,G0,e]

. (et (e-1)

]

Pl et .

(3)

(2)

£ 0 and using (4.30)

fulfilling the




The equations (4.60), (4.61), (4.63) determine g(T) and S(T) can be calculated from

(4.64) S(T) = smpm(r)z -1,

S(T) fulfills (B,} because of (4.62), the proposition (A,) follows from (4.8) and (4.29),

and (Cz) is implied by (4.60), (4.62). This asymptotic boundary condition (with

Y(T) = 0) is the projection condition fulfilling

(4.65) S, (TIEG(T)[Gy,G) = O .
In general we only can determine a finite number of coefficients of the expansion of Prgye
P(z), P(3)- An algorithm is given in Markowich (1980b) and it is shown that

(4.66) £y =T 1 l S (t)E pt (t)

P2 1o i(2)

where the matrices S; are in block diagonal form and their diagonal blocks are

-q. . ~ (X, <~1)q, -
(4.67) S34(t) = diag(1,t 943, ,,.,¢ 13777913,

The E;'s are regular and

® _ 4
~ ij o o
(4.68) (2)(t) I+ 321 Pyt as t *

holds.

We denote by

m o - J.
(4.69) Pyt = T 18, (6)E, p (0, Pty ~1+ T pi oo P
(2)0 ot 210! Py s P20

that diagonal block of P(Z) which is associated with the zero-real part eigenvalue of

ik
i1
Jo. Assume now that we know P(Z)O""'p(2)0 for i 1(1)m and
kz > 2p(a + 1(r = 1) = 1 then we set
= Si ERT

(4.70) P(z)o(t) = | | S, (tIE, p(z)o(t)’ Py "1+ L POt

i=1 =1

=28~




and assume that we know

kg _3
- j P T~ -
(&) =1+ § Plygt T+ Ky pla+ Dir=m -1

(4.71) . 3
=1

P

E
9(3)(t) associated with the real par. zero eigenvalues of J,. Moreover we have to know

(t) consists of the first k3 + 1 summands of P(3)0(t) which is that block of

3

1 ;

. 7 - ) -3 T -1
(4.72) P(1)(t) I+ ; P(1)jt ‘ k1 > {a+ N (r 1) 1

j=1

Using 3(1),3(2)0,3(3)0 instead of P(1),P(2)0,P(3)0 we calculate a matrix S(T) instead

of S(T) using (4.60), (4.61), (4.63), (4.64) and a perturbation analysis shows that

{4.73) s(m) = s(m) + or*7
where
k. + 1 k, + 1
(4.70) k= min(k, Z—— (@t NE- 1 -1, 3 et N(T-1 .
Therefore
(4.75) SmemEgc ) = o™ e &.6.)

+1)(z-1)-k=1
and the order of convergence for homogeneous problems is at least T(a D{z=3)-k .

The requirement that A(t) is analytical in t = ® is very restricting, therefore we

will now admit matrices A(t) fulfilling

1) ¢ C(a+1)£+1

(4.76) Ae c(i1,#), A(L (o, 31), 6> 1

where & is the maximal algebraic multiplicity of an eigenvalue of A(®} with nonpositive

real part. Therefore A can be expanded:

-1 v L o )R L
(4.77) A(t) = A, +t A+ +t ATt A(t)
where

-(a+1)2-1-8

(4.78) Alt) = alt)t B0, ae c ([1,@) .

The problem (3.1), (3.2) can now be rewritten as




(a+1)2 -1 a~
(4.79) y' -t I oapeTly =Ry + %y,
! i=0
2
(4.80) y € c(1,°])

and can be regarded as a perturbed system of

~ a (a+1)T ~i~ [+1 ’
(4.81) v -t Y oAty =%,
1
i=0
(4.82) y € cllr,=]) .
Markowich (1980b) has proven that the n x (;B + r_) solution matrix Ewg of (4.79),

(4.80) fulfills for large t:

-1-e(£nt)jlo(t)[E°,G‘]l

(4.83) B2(e) - (8)(§,6_11 < const. ¢
where 0 € j € 2n holds and ¢(t)[EO,G_] is the general solution of (4.81), (4.82).

Moreover a particular solution Ey(f) of (4.79), (4.80) can be constructed if £ fulfills

(4.31) and
(4.84) IY(E)(E) - (HE)(E)D € comst. t ' B(ane)dn(ue) (o)

Eotr_
holds. The problem (3.1), (3.2), (3.3) is for all B¢ R and f fulfilling (4.31)
uniquely soluble iff the (?0 +x_) x (?0 + r_) matrix 1
(4.85) BEV (1) is regular . '
Of courge, B {18 a (;b + r ) x n matrix, é

For the existence theory and for the following stability theorem it is sufficient to |

_(u+1)r-£a(t). This implies the 1

require that {4.77) holds with £ = r and with A(t) = t
right hand sides of (4.83) and (4.84) to equal const.(lnT)JT-€. 4

We consider the asymptotic boundary value problem i

. VoL e -+
(4.86) Xy~ CAlE)x, = £ E(E), 1<e<T,
(4.87) Bx (1) = 8 , k
(4.88) S(T)x (T) = ¥(T)

and show that the construction of S(T) and the stability estimte (4.34) depend only on

the validity of (A,), (B,), (C,) for the perturbed problem
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- (a+1)T 1~ «
(4.89) X, -t ( 120 At )xT =t £(t) ,

(4.90) S(T)X,(T) = Y(T)
if (4.85) holds.
Theorem 4.2. Let A fulfill (4.76) and let (4.85), (Az), (Bz). (Cz) of Theorem 4.1 hold

where

ReQ(t)

$(t) = P 1)(t:)li' (e)p ()t

( (2) (3)

is the fundamental matrix of the homogeneous problem (4.81). Then there is a unigue

solution Xq of the problem (4.86), (4.87), (4.88) for T sufficiently large and for all
r +r r +(r.-r. )

B €R T, Y(T) € R 00 , £ € c((1,T]). This solution Xp fulfills the estimate

(4.34).
We write (4.87)

(a+1) T

a
(4.91) xt-t( I At
T 4o 3

-i o, ~
Jxg = tT(A(EIx, + £(8)), 1<tQT

and write the general solution after having set Xp = EVp as

v, (t,T) 0 D
Q(t)=Q(T) (ty =

v (t) =P, (t) G..,P,. ()P, (t)¢ (2) G]E +

(4.92) T (n { [ 0 e] +'7(2) {3) T/ Cof™1

(2)

eQ(t)tD ~ (2) :

+ P(t) [GOIG_]Ez + (HT AEVT)(t) + (H “'f£)(¢)

We restrict t to the interval (§,T] where § is sufficiently large, so that
(4.93) H,:,Z’K : C((8,T] » C([6,T))

holds. Then the following estimate is fulfilled:
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(2)y (2)> (2)~
1H_“"al = max IH_~ "Aul < max (0_H. " "Aul +
T {§,7) T (5,7) T + [8,T]
. <
(4.94) tal o < at o<
(2)~ (2)%
+ ITH0 A“'[G,T] + ITH- Au'[G,T]) <
~ -C J 1
< const.(lAIIG'T] + 877 (4né) IaI[GIT]) < TrEr

for all T > &> & sufficiently large. This follows from the estimates for THi1),THi1)

given in Chapter 2 and from the estimates for Hy given in Markowich (1980b). Therefore
(1 - HTRE) 18 invertible on C([§,T) and we get:

0 0
(4.95) volt) = b (e)E, + v L, + w(f)(e),  te [8,T]

where "] wg fulfill the equations:

0
T+’ T

Y (*,T) ] D
0 _ (2)y 0 _ . + . Wy R(°)=Q(T) oy =
(4.96) .y, - K AE LN )[ [ ]G+.p(2)( P 5y (e (T) Gy | »

v
T T+ 8 8
0 ()3, 0 _ .~
(4.97) Vo = Hy REQY_ = 601G ,G_]
and Tw(f) fulfills
(2)> (2)
(4.98) TW(f) HT ATW(f) = HT f .

By evaluating at the boundaries the following block system is generated:

] 0 .
BE_Y, (1) BE_v_(1) £, 8 - BELW(E)(1)
(4.99) 0 0
S(T)IELV, (T) SITIELY_(T)y { €, Y(T) = S(TIE Y (E)(T)

Obviously, the matrix in the (1.1) position is bounded as T + ®, From (4.97) we derive:

(4.100) SMEN (1) = sMENM (E,61 + smEmSRe 0 m) .

From the definition of Héz) we conclude that

T
s(T)E(n;Z’AE Wiry = S(T)EP(T)Der(T)TD | Boe-Q(S)S-DP-1(s)E_1AEva(s)ds +

(4,101} T = 5

(2)> 0
+ S(ME(H_"TA W) (D)

-




where SO is the projection onto the direct sum of invariant subspaces of D belonging to
solutions which decay to zero.

Now from Markowich (1980b), Chapter 4 we conclude _
-(a+1)r- 2

(4.102) 1, R M = 1a Rt = o Yo ue€ c(l6,T]) . g
This and (Bz) guarantee that L
(4.103) 1Sy’ (1)t = orr (A (21,
holds. Similarly (4.96) implies
(4.104) S(T)ETWE(T) = S(T)EP<’)(T){G+,P(2)(T)P(3)(T)EO] v o (FD (=T,
Markowich (1980b) has proven that ;1
(4.105) w?c - Eiswfc = @[EO,G_] '
where H is defined as H;Z) only the integrals are stretched to = instead of T and 1
C 1is a regular (;0 +r_) x (;0 + r_) matrix. We subtract (4.97) from (4.105) getting !
(4.106) e - w0 - HRElc + i?RE W) = 0

' or
(4.107) wle - M= H;Z)XE(¢EC - Tw?) + (iAey’c - H;z)XEwgc), §<tcT

and therefore

0 0 e~ (2)>
. ] - ] < t, - ] .
(4.108) W_C TW_ {6,T) const. IHA HT A (6,7]
By continuation to [1,T] we get
(4.109) lim Ich - Twol =0 I
T4 - [1,T] .4
so that i
0 0 4
(4.110) TW_(1) =9 _(1)C + 0o(1) as T * =,
3
Also we derive 1'
- (2) - (a+1) (r=1)
(4.111) S(T)ETW(f)(T) S(T)E(HT £)(T) + o(T )"fn[G,T] .
Theorem 4.2 follows now from (4.103), (4.104), (4.110), (4.111) by considering the system L
(4.99) as in the proof of Theorem 4.1. The convergence results change correspondingly to ]
(4.83), (4.84):
+1) (- ~ - j
. (4.112) My=x b 4o € const. (p‘ Ot IF 1)(ns('r)eo(T)[c;o,c_u + UHEM(TIN) + T 5 enm Dy |
’
| 4
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5. Nonlinear Problems

Now we deal with problems of the following form:

(5.1) v' = t%F(t,y), 1<tcw aeN,
(5.2) y € C([1l°°]) ?
(5.3) bly(1)) = 0

f: R + R is supposed to be continuous in (®,y(®)). (5.1) and (5.2) imply that
$5.4) £(®,y(®)) =0
holds. So y(®) can be calculated a priori as solution of a system of n nonliner

equations. If

(5.5) rank(af(;y 2 AR

then the solution manifold is discrete so that the possible values of y(®) are known a
priori. This case has been treated by de Hoog and Weiss (1980b). We will asume that the

rank of this matrix is smaller than n, so that we have to expect a continuous solution
n

manifold y_(u) with p € s CR 1, n1 < n., We assume that we have determined such a n,-

dimensional manifold and that f(t,*) € C1(Rn) for all t ¢ {1,] and

Af(t,y, (W) ® -3 -
_= ] A ()t for t > t

(5.6) A(t,u) =
3y
i=0

holds. We calculate the fundamental matrix E(u)¢{t,u) of the linearized system
~ a ~
(5.7) y' = tA(t,u)y
as an asymptotic series. E(u) transforms Ao(u) to its Jordan canonical form Jo(u).
Now we restrict u to subsets S CS so that Tyr Tge Yoo T which are defined for
Jo(u) as in the last chapters are independent of u in S. Moreover we require that

a -

there is a n x Ty, - projection like matrix G0 independent of u € S so that

-(a+1)T-€_ (1)

(5.8) 1o(e,)IG ,G 1N < clu)t (ant)?, e, (w) >0
and that -

=2(a+1)r-¢, () ~
(5.9) TE(t,y, (W) € cluie ¢ E,W) >0, weES

I

-




holds. Assuming that fy is locally uniformly Lipschitz continuous around yw(u).
Markowich (1980b) showed that there are solutions y = y(°*,u,n) in the space of functions
in C((8,»2)) which decay to a finite limat at least as fast as t—(a+1);;s . (lnt)2j
where ¢ = min(cl,ez) and § sufficiently large. These solutions fulfill the estimate:

(5.10) o dy(e,u,m) = y (w) = EGOCE,) (6,6 Il € const(u)s(int)?Ie (31)X7¢

r . +r
for n € R 0 . For many important applications

(5.11) flt,y (1)) =0

and ¢(t,u)[ao,G_] decays exponentially. In this case the right hand side of (5.10)
contains the exponential factor l¢(t,u)[é0,G_]l2 and the algebraic and logarithmic
factors change, It follows from this analysis that the boundary value problem (5.1),
(5+2), (5.3) is soluble if the equation

(S.12) N b(y(1,u,n)) =0

n +r +r
is soluble where b : Rp + R 1 and y(t,u,n) denotes the continuation to [1,®]

(if it exists). We assume that b € c‘(n“).

The approximating problems have the form

a
(5.13) x% =t f(t,xT), 1<t<T,
(5.14) b(xT(1)) =0,
(5.15) - S(xT(T).T) =0
e n-(n1+r°+r_)
and S : R + R « We assume that we have obtained a solution

y* = y(*,u*,n*) fulfilling (5.10) and that this solution is isolated, i.e. the linearized

problem
(L, y*
{5.16) wto= p¥ SELERT(L)) E ), ,
(5.17) wec(1,=]),
*
(5.18) 3b(y* (1)) L4y ap

3y(1)

has only the trivial solution w = 0. Using (5.10) we get for fy Lipschitz continuous

-_ &)

"(0*1)!' .
*

(5.19) af(t;y (e L ace,um) + ot )

From Markowich (1980b), Chapter 4 we derive that the general solution of (5.16), (5.17) is




(5.20) w = E(u')wg(t,u',n')i, ge C .

wo is a nx (;0 + r_ ) matrix.

For the following we asume that
(5.21) Ty =+ ;0
holds, which means that the nonlinear problem and the linearized problem have solution
manifolds of the same dimension. The isolatedness of y* now implies that the
(;0 +r ) x (;0 + r_) matrix

L ]
{5.22) 3b§y(:;)) E(u')wg(l.u‘,n') is reqgular.

Now we define:

(5.23) (Fy)(t) = (£ 2y' = £(t,y),bly(1)),s(y(T),T) - S(y{T),T)) ,
(5.24) Fo:o(cli1,) nc'irr,=) n {yle %y e L R DT LY P I ST
r
+ (Cl1,=]) x Rnlu(v',a)u = IvI“’;] + Nal)

and
t
‘ (5.25) (Fox) (t) = (£ %" = £(t,%),b(x(1)),S(x(T),T)) ,

1 ~a
(5.26) FT : (C ([1,7]),0xt = 'x'[1,T] + T Ix I[1,T]) +

+ (c((1,7)]) x R®, M(w,b)¥ = I + 1Bl .

“Hm

All involved spaces are linear normed spaces and the space on which F, is defined is a
! *
Banach space.‘ ) We calculate the Frechet-derivative of FT(y') where y* is an

(isolated) solution of F(y*) = 0 assuming that s € C1(Rn):
(£7% - BE(E,y*(L))  Ab(y*(1)) as(y'(T),T)) .

e =
(5.27) l(FT(y »z)(t) 3y ’ ay(1r "’ Ay(T)
Assuming that
(5.28) é% (t,*) is locally Lipschitz continuous in the ﬂ'ﬂ[1 w]—norm

around y* uniformly in t € (1,®] ,

(')Notms are always assumed to be taken in the appropriate spaces.
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{5.,29) (y(1)), 5%%;7 (y(T)) are locally Lipschitz continuous

b
dy(1)

around - y*(1) resp. y*(T)

hold, we derive

. - B -
(5.30) nFT(Y1) FT(yz)" < const.ﬂy1 y2H
for
* o PR ' i =
(5.31) Iy in[1,T] + T Ny Yy l[1,T] < const., i 1,2 .
Moreover Theorem 4.2 assures that the problem
*
(5.32) e e A (LI
Yy
*
(5.33) bly* (V) 4y =g,
dy(1)
3S(y*(T),T) -
(5.34) 3y (T) z(T) Y{(T)
;O+r_ n-(;0+r_)

is for all f € Cc([1,T]), B € R ; Y(T) € R uniquely soluble if

aS(y*(T),T) :
(5.35) (T fulfills (Az), (82), (Cz)
where

*

(5.36) E(u*)o(t) = E(u*)o(t,u%) = E(u)p(t,ur)eD M )eR1E1™)

is the fundamental matrix of the problem

@ PECEy )

(5.37) Wt — .
3y

It also implies that the unique solution fulfills

(5.38) Ix + o < const. T T anr?ice,8, v (T
{1,7] T {1,T)
so that F%(y') is invertible and
(5.39) LELGN T ¢ conse, 10T D nm )
We have used that (5.19) holds. From the nonlinear stability-consistency concept
Spijker (1971) we conclude that
-a (a+1)T 23

. ' - y*i + ] - ) < . T o 1 . LT

(5.40) X, Y (1,7 T X (y*) 0,1 const (AnT) S(y*(T),T)

if
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S Bl — . aa

-2(a+1)r

(5.41) IS(y*(T), D)1 < pT (an7) 43

holds, where »p is sufficiently small. x, is a solution of FT(x) = 0 which is unique

1

in a spheré whose center is the restriction of y* to [1,T] and whose radius is smaller

-(a+1)T -3
than pzT (a 1)t(!.n'r) 23 with P, sufficiently small. This holds in the
lx'[1,T] + T-ulx'l[1'T]-norm. From (5.40) we conciude
(5.42) Ix < conste TV 0nm2dyg(gr(my, TN

- w
Y,
if (5.35) and (5.41) holds.

Because of (5.10) it is sufficient to require that (A,), (82). (C,) hold for the

matrix %% (yﬂ(u'),T) ingtead for %% (y(T,u*,n*),T). Moreover (5.41) is fulfilled if
(5.43) S(y, (u*),T) 2 0 for T sufficiently large

and

(5.44) |%% (o () T (y(Tu* 1% = y ()t = o(@ 20Ty (g

In most cases of physical interest y*(T) converges exponentially so that (5.44) is
fulfilled automatically. Therefore, if (Az), (Bz), (C2) hold for %% (y,(u*),T) and if
(5.43) is fulfilled, convergence follows at isolated solutions and the order of convergence
can be estimated by (5.42).

For the case when £ 1is independent of t Lentini and Keller (1980) have generalized
the projection condition and an example for the construction of an appropriate asymptotic

boundary condition in the other case will be presented in Chapter 6.
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6. A Case Study

The problem we analyse is a similarity equation for a combined formed and free con-~

vection flow over a horizontal plate (see Schneider (1979)). 4ue governing equations are

Yy
(6.1) x
73
X
vt x 1(1+ﬁ) .k = xeboy), 0 S x sy,
2 x Y272,
y
1 1
S (VT
1 0 0 0 0
(6.2) 0 1 0 0 Jyto)y = | =1} ,
0 0 0 1 1
(6.3) yE c([O'”]) .
From (6.1) we conclude that
(6.4) Yo = Yo(u) = (1,0,0,007, we R
and
0 0 o 0 0 1 0 0
I,y (W) 0 S . ° 0 . 0
(6.5) 3y - ] 0 -3 - 3 . ;1‘_ 0 0 - 3 0 .
1 B
0 0 ¢ > o 0 0 5
. J \ —
A, A1(u)

For this problem a = 1, ; = 2 hold. We calculate:

o o0 0 0
o o 0 0
(6.6) J =B 'AE-= 1 E = diag(1,1,1,- 2)
: 0 0 o o -3 1] Gleledem 3 v
0

RPN o DA

AR A N




(6.7) 3.0 = EA(WE = A (W) .
Markowich (1980b) calculated an asymptotic expression for the fundamental matrix ¢(x,u)
of the system

~ 1 ~
| I —_
(6.8) w x(J0 + . J1(u))w B

11 ox®) ox™h
2

N

0 x! oxy oxh ) - g Xy,
(6.9) é¢(x,u) = -2 diag{1,x,1,x )diag(1,1,e ,e Ye
. 0 0 1 1-x
0 0 0 x 2
N Y,
¥_'W__J \_\/——J
P(x,u) x° 2(x)

Markowich (1980b) showed that the problem (6.1) has solutions y(-,E1,52,u) which fulfills

2

blx
[}
Nl

x
{6.10) ly(x,51,52,u) - y,(u)l € const. xze . x suff. large

where the constant depends linearly on 51,52. These solutions are in Ae G + {ya(u)}
’
where

(6.11) = {ulutx) = x *Fu(x), U e c (0,23}, €>0.

R0
From (6.9) we conclude that

(6.12) 8y = 1h,0,0,00%, & = 10,1007 .
The simplest choice of S is a linear function so we set

(6.13) S(X) = (84(X),8,(X),85(X),5,(X}] .
Condition (B,} of Theorem 4.1 applied to our problem gives
(6.14) s,(x) = 0(x"2) |

We choose s1(x) £ 0. Condition (Cz) gives

(6.15) (s,00x H7' = otx?) .

Therefore any matrix S(x) of the form

{6.16) S(x) = [O,sz(x),s3(x),s3(xn
where

. - .« * ' - =
(6.17) sz(x) const 0 ss(x) 0(1), s4(x) 0(1)

fulfills (A,), (Bz), (Cy)« A natural choice is the following asymptotic boundary condition
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6. A Case Study

The problem we analyse is a similarity equation for a combined formed and free con-

vection flow over a horizontal plate (see Schneider (1979)). uue yoverning equations are

\
%2
(6.1)
b4
x
y' = x 1 ¥y k = xf(x,y), 0 €< x <™,
IR IR
Yy
1 1
T2 1+ x )Yd
1 0 0 0 0
(6.2) 0 1 0 0 |y(0) = -1 ’
0 0 0 1 1
(6.3) y € c({o,®)) .
From (6.1) we conclude that
(6.4) Yo = Vo) = (1,0,0,07, wue R
and
0 0 0 0 0 1 0 0
0 1
3E(x,y (u)) 0 S ; 0 ; 0
(6.5) 3y - 0 [ -3 -3 . i 0 0 -3 0 .
1 u
0 0 0 2 0 0 0 2
| J \ J
Y
Ao A1(u)

For this problem a = 1, T = 2 hold. We calculate:

0 0 0 0
0 0 0 0
-1 2
(6.6) Jo = E AE =] 0 __;_ 4 |+ E = diag(1,1,1,- 1),
0

N e gt f———— . o
v PP ..




-1
(6.7) J1(u) = E A1(u)E = A1(u) .
Markowich (1980b) calculated an asymptotic expression for the fundamental matrix ¢(x,u)

of the system

~ 1 ~
[ -
(6.8} w x(Jo + o~ J1(u))w .
11 ox?) oxh
2 2
[} x-1 o(x 1) o(x 1) 2 - f- - %x iL - %x
(6+9) ¢(x,u) = diag(1,x,1,x" Ydiag(1,1,e ,e Ve
-2
- 0 0 1 1-x
00 0 x 2
— - \—"—~¢’—'*'J /
P(x,u) xD tex:u)

Markowich (1980b) showed that the problem (6.1) has solutions y(°,€1,52,u) which fulfills

2

x
(6.10) ly(x,£1,£2,u) - ym(u)l < const. xze , x suff., large

A'x
1
[NY)

where the constant depends linearly on 51,€2. These solutions are in Ae o ¥t {y,<u)}
’
where

(6.11) = {ulu(x) = x-4-€U(x), U € Cb([O,“))), €>0 .

AE,O
From (6.9) we conclude that

(6412) G, = (1,0,0,017, &y = 10,1,0,007 .
The simplest choice of S is a linear function so we set

(6.13) . S(X) = (5,(X),8,(X),85(X),8,(X)}] .
Condition (B,) of Theorem 4.1 applied to our problem gives
(6.14) 8y(x) = 0(x72) ,

Wwe choose s,(x) 2 0. Conditjon (C,) gives

(6.15) (a,0x 17 = 0tx?

Therefore any matrix S(x) of the form

(6.16) S(x) = [0,85(x),85(x),85(x)]

where

(6.17) sz(x) = const. # O, 53(x) = 0(1), s‘(x) = 0(1)

fulfills (A,), (B,), {C,). A natural choice is the following asymptotic boundary condition
2 2 2
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(6.18) (0,1,0,0}vy(X) =0
which assures convergence of the order

(6.19) lvk - Y'[1,T]
where u* is the parameter value of the actual solution y(',u':E:,E;) of (6.1), (6.2),

2 *
€ const. xsexp(- f— - g— x)(lnx)z

(6.3) which is assumed to be isolated. (6.,19) holds because of
(6.20) (0,1,0,0JY.(u) £ 0 for u € R
and because of (5.41).

Numerical calculations can be found in Schneider (1978).

-dtl=

e s e
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